Share:

YCgCo to YcCbcCrc Converter - Color Space Converter

YCgCo color space introduction

Also known as the YCgCo color space.There are 3 channels in total, Y,range from 0 to 1.Cg,range from -0.5 to 0.5.Co,range from -0.5 to 0.5.
Origin: The YCgCo color space was designed for digital video processing to provide a simple and reversible color transformation method, serving as an approximation of the YCbCr color space.
Primary Names: YCgCo color space, where 'Y' represents the luminance component, 'Cg' stands for the green difference component, and 'Co' represents the red-blue difference component.
Typically expressed as a triplet, for example: YCgCo(0.5, -0.25, 0.25) represents a color with specific luminance and chromatic differences.
Usage Scope: Mainly used in image coding and digital video processing, for example, it is applied in encoding standards such as JPEG XR and H.264/MPEG-4 AVC.
Additionally, due to the simple conversion process of YCgCo, it supports efficient hardware implementation and can be losslessly transformed back to the RGB format.

YcCbcCrc color space introduction

Also known as the YcCbcCrc color space.There are 3 channels in total,Yc,range from 0 to 1.Cbc,range from -0.5 to 0.5.Crc,range from -0.5 to 0.5.
The YcCbcCrc color space is based on the traditional YCbCr color space, optimized for chrominance components of High Definition Television (HDTV) signals to accommodate video signals of different resolutions during transmission and processing.
YcCbcCrc uses a component representation method similar to YCbCr, usually including a luminance component Yc and two chrominance components Cbc and Crc. The difference lies in the scaling factors for Cbc and Crc, which are adjusted according to different HDTV standards. In 8-bit video signals, the range of values for Yc, Cbc, and Crc may vary depending on the standard.
This color space is primarily used in professional video production and editing, excelling in video compression and broadcast transmission, especially when dealing with high-definition video signals.
YcCbcCrc adapts to higher resolution video signals with different scaling and offset compared to standard YCbCr. This can improve the representation of chrominance signals, particularly during color conversion and color grading processes.

You might also want to convert YCgCo color space to these formats: