Share:

YUV(EBU) to HSV(HSB) Converter - Color Space Converter

YUV(EBU) color space introduction

Also known as the YUV(EBU) color space.There are 3 channels in total, Y,range from 0 to 1.U,range from -0.5 to 0.5.V,range from -0.5 to 0.5.
Origin: The YUV color space was designed for analog video signal transmission, separating luminance information (Y) from chrominance information (U and V) to improve the efficiency of color transmission and ensure compatibility with black and white television.
Primary Names: YUV color space, where 'Y' represents the luminance component, and 'U' and 'V' represent the chrominance components, describing the difference in color from a reference white.
Typically expressed as a triplet, for example: YUV(0.5, -0.33, 0.25) represents a color with specific luminance and chrominance.
Usage Scope: Mainly used in analog video transmission and compression. In modern applications, YUV is common in digital video encoding and broadcasting, video editing software, and image processing.
Additionally, the YUV format is very effective in color processing to reduce bandwidth requirements because it allows the resolution of chrominance components to be reduced during transmission rather than luminance components, taking advantage of the human eye's greater sensitivity to luminance over chrominance changes.

HSV(HSB) color space introduction

Also known as the HSV(HSB) color space.There are 3 channels in total,hue,range from 0 to 360.saturation,range from 0 to 100.value,range from 0 to 100.
Origin: The HSV color space was invented in the 1970s with the goal of combining an intuitive understanding of color with the needs of digital color processing.
Main Names: HSV or HSB (where B stands for Brightness), which includes three color channels H (Hue), S (Saturation), and V (Value/Brightness).
Typically expressed as a triplet, for example: hsv(120, 100%, 100%) represents a pure green color with maximum saturation and brightness.
Usage: Used in color detection and segmentation in image analysis and processing, color selection and adjustment in graphic design software, and in color pickers in user interface design.
Additionally, HSV can be algorithmically converted to and from RGB. The HSV model is highly intuitive for color adjustments, allowing users to independently alter the perceptual attributes of color. HSV is similar to HSL, but HSV's Value (V) takes into account the effects of hue and saturation, while HSL's Lightness (L) represents the midpoint between pure black and pure white.

You might also want to convert YUV color space to these formats: