Share:

YCbCr(YCC) to YDbDr Converter - Color Space Converter

YCbCr(YCC) color space introduction

Also known as the YCbCr(YCC) color space.There are 3 channels in total, Y,range from 16 to 235.Cb,range from 16 to 240.Cr,range from 16 to 240.
The YCbCr color space was specifically designed for digital television and video compression standards like MPEG and JPEG, aiming to minimize data size while maintaining high-quality imagery during the compression process.
The primary name is YCbCr. It is often confused with YUV, although they are technically different.
The YCbCr color space is typically used in a digital format, expressed as a combination of three component values, like (Y, Cb, Cr). For 8-bit video signals, these components typically range from 16 to 235 for Y, and 16 to 240 for Cb and Cr.
YCbCr is predominantly used in digital video capture, processing, storage, and transmission. It forms the core color space for television broadcasting, DVD videos, and image compression standards such as JPEG.
In the YCbCr color space, Y represents the luminance component, while Cb and Cr represent the chrominance components of blue and red, separated from the Y component, allowing chroma subsampling to reduce data amount. As the human eye is more sensitive to luminance than to chrominance, this separation usually doesn't affect the viewing experience.

YDbDr color space introduction

Also known as the YDbDr color space.There are 3 channels in total,Y,range from 0 to 1.Db,range from -1.333 to 1.333.Dr,range from -1.333 to 1.333.
Origin: The YDbDr color space was designed for the European SECAM color television system for color encoding in analog television broadcasting.
Primary Names: YDbDr color space, where 'Y' represents the luminance component, 'Db' and 'Dr' respectively represent the blue and red difference components.
Typically expressed as a triplet, for example: YDbDr(0.5, -0.1, 0.9) represents a color with specific luminance and chromaticity differences.
Usage Scope: Primarily used in SECAM standard color television broadcasting, which is a color video standard specific to certain countries and regions.
Additionally, compared to PAL and NTSC, SECAM uses frequency division multiplexing to separate the chrominance components, reducing cross-color interference during color image transmission.

You might also want to convert YCbCr color space to these formats: