Share:

lms to YcCbcCrc Converter - Color Space Converter

lms color space introduction

Also known as the lms color space.There are 3 channels in total, long,range from 0 to 100.medium,range from 0 to 100.short,range from 0 to 100.
The LMS color space is based on the response of the human eye's cone cells to color, consisting of the responses from three different types of cone cells which are most responsive to long, medium, and short wavelengths of light respectively.
LMS stands for Long, Medium, and Short wavelengths.
The LMS color space typically uses three coordinates to express colors, corresponding directly to the responses of the cone cells. This space is often used to calculate transformations to other color spaces that are perceptually closer to human vision, such as from RGB.
The LMS color space is primarily used in the fields of biology and vision science, particularly for simulating and understanding human visual perception.
Since LMS is based on physiological characteristics, it is not commonly used for practical applications such as image processing or color printing but serves as a research and theoretical model.

YcCbcCrc color space introduction

Also known as the YcCbcCrc color space.There are 3 channels in total,Yc,range from 0 to 1.Cbc,range from -0.5 to 0.5.Crc,range from -0.5 to 0.5.
The YcCbcCrc color space is based on the traditional YCbCr color space, optimized for chrominance components of High Definition Television (HDTV) signals to accommodate video signals of different resolutions during transmission and processing.
YcCbcCrc uses a component representation method similar to YCbCr, usually including a luminance component Yc and two chrominance components Cbc and Crc. The difference lies in the scaling factors for Cbc and Crc, which are adjusted according to different HDTV standards. In 8-bit video signals, the range of values for Yc, Cbc, and Crc may vary depending on the standard.
This color space is primarily used in professional video production and editing, excelling in video compression and broadcast transmission, especially when dealing with high-definition video signals.
YcCbcCrc adapts to higher resolution video signals with different scaling and offset compared to standard YCbCr. This can improve the representation of chrominance signals, particularly during color conversion and color grading processes.

You might also want to convert lms color space to these formats: