Share:

LABh(hunter-lab,hlab) to CubeHelix Converter - Color Space Converter

LABh(hunter-lab,hlab) color space introduction

Also known as the LABh(hunter-lab,hlab) color space.There are 3 channels in total, lightness,range from 0 to 100.a,range from -128 to 128.b,range from -128 to 128.
Developed by Richard S. Hunter in the 1940s as a color scale based on opponent-color theory. It is an adaptation of the CIE XYZ color space to be more perceptually linear.
Often referred to as Hunter Lab, or Lab Hunter.
Colors in the Hunter Lab color space are expressed through three coordinates: L (for lightness), a (red/green value), and b (blue/yellow value). These are calculated from CIE XYZ using Hunter's specific equations.
Hunter Lab is used in various industries for color matching, quality control, and other applications where a perceptually linear space is beneficial for color difference measurement.
Although similar to CIELAB, the Hunter Lab color space is used less frequently in contemporary applications. However, it remains significant in industries that adopted it early on and continue to rely on its specific color-rendering properties.

CubeHelix color space introduction

Also known as the CubeHelix color space.There are 3 channels in total,Hue,commonly referred to as h,range from 0 to 360.Saturation,commonly referred to as s,range from 0 to 4.614.Lightness,commonly referred to as l,range from 0 to 1.
The CubeHelix color space was designed by Dave Green to create gradients that are visually uniform in both color and greyscale.
Known as the CubeHelix color space.
A color gradient is created by defining a starting hue and number of rotations while controlling changes in brightness and saturation to ensure visual consistency when converted to greyscale.
CubeHelix is particularly suited for scientific visualization, especially when images need to be converted to greyscale for printing or viewing by individuals with color vision deficiencies.
The advantage of CubeHelix lies in its ability to produce gradients that are continuous and uniform in both color and brightness, avoiding the jumps in brightness or color distortions often encountered in other color spaces.

You might also want to convert LABh color space to these formats: