Share:

LABh(hunter-lab,hlab) to YUV(EBU) Converter - Color Space Converter

LABh(hunter-lab,hlab) color space introduction

Also known as the LABh(hunter-lab,hlab) color space.There are 3 channels in total, lightness,range from 0 to 100.a,range from -128 to 128.b,range from -128 to 128.
Developed by Richard S. Hunter in the 1940s as a color scale based on opponent-color theory. It is an adaptation of the CIE XYZ color space to be more perceptually linear.
Often referred to as Hunter Lab, or Lab Hunter.
Colors in the Hunter Lab color space are expressed through three coordinates: L (for lightness), a (red/green value), and b (blue/yellow value). These are calculated from CIE XYZ using Hunter's specific equations.
Hunter Lab is used in various industries for color matching, quality control, and other applications where a perceptually linear space is beneficial for color difference measurement.
Although similar to CIELAB, the Hunter Lab color space is used less frequently in contemporary applications. However, it remains significant in industries that adopted it early on and continue to rely on its specific color-rendering properties.

YUV(EBU) color space introduction

Also known as the YUV(EBU) color space.There are 3 channels in total,Y,range from 0 to 1.U,range from -0.5 to 0.5.V,range from -0.5 to 0.5.
Origin: The YUV color space was designed for analog video signal transmission, separating luminance information (Y) from chrominance information (U and V) to improve the efficiency of color transmission and ensure compatibility with black and white television.
Primary Names: YUV color space, where 'Y' represents the luminance component, and 'U' and 'V' represent the chrominance components, describing the difference in color from a reference white.
Typically expressed as a triplet, for example: YUV(0.5, -0.33, 0.25) represents a color with specific luminance and chrominance.
Usage Scope: Mainly used in analog video transmission and compression. In modern applications, YUV is common in digital video encoding and broadcasting, video editing software, and image processing.
Additionally, the YUV format is very effective in color processing to reduce bandwidth requirements because it allows the resolution of chrominance components to be reduced during transmission rather than luminance components, taking advantage of the human eye's greater sensitivity to luminance over chrominance changes.

You might also want to convert LABh color space to these formats: