LABh(hunter-lab,hlab) to YDbDr Converter - Color Space Converter
LABh(hunter-lab,hlab) color space introduction
Also known as the LABh(hunter-lab,hlab) color space.There are 3 channels in total, lightness,range from 0 to 100.a,range from -128 to 128.b,range from -128 to 128.
Developed by Richard S. Hunter in the 1940s as a color scale based on opponent-color theory. It is an adaptation of the CIE XYZ color space to be more perceptually linear.
Often referred to as Hunter Lab, or Lab Hunter.
Colors in the Hunter Lab color space are expressed through three coordinates: L (for lightness), a (red/green value), and b (blue/yellow value). These are calculated from CIE XYZ using Hunter's specific equations.
Hunter Lab is used in various industries for color matching, quality control, and other applications where a perceptually linear space is beneficial for color difference measurement.
Although similar to CIELAB, the Hunter Lab color space is used less frequently in contemporary applications. However, it remains significant in industries that adopted it early on and continue to rely on its specific color-rendering properties.
YDbDr color space introduction
Also known as the YDbDr color space.There are 3 channels in total,Y,range from 0 to 1.Db,range from -1.333 to 1.333.Dr,range from -1.333 to 1.333.
Origin: The YDbDr color space was designed for the European SECAM color television system for color encoding in analog television broadcasting.
Primary Names: YDbDr color space, where 'Y' represents the luminance component, 'Db' and 'Dr' respectively represent the blue and red difference components.
Typically expressed as a triplet, for example: YDbDr(0.5, -0.1, 0.9) represents a color with specific luminance and chromaticity differences.
Usage Scope: Primarily used in SECAM standard color television broadcasting, which is a color video standard specific to certain countries and regions.
Additionally, compared to PAL and NTSC, SECAM uses frequency division multiplexing to separate the chrominance components, reducing cross-color interference during color image transmission.
You might also want to convert LABh color space to these formats:
LABh to HEX converterLABh to RGB(sRGB) converterLABh to CMYK converterLABh to CMY converterLABh to XYZ(ciexyz,cie1931,XYZ D65) converterLABh to HSL converterLABh to HSV(HSB) converterLABh to HSI converterLABh to HWB converterLABh to xyY(Yxy,yxy) converterLABh to YIQ converterLABh to YUV(EBU) converterLABh to YCgCo converterLABh to YPbPr(Y/PB/PR,YPRPB,PRPBY,PBPRY,Y/Pb/Pr,YPrPb,PrPbY,PbPrY,Y/R-Y/B-Y,Y(R-Y)(B-Y),R-Y,B-Y) converterLABh to YCbCr(YCC) converterLABh to xvYCC converterLABh to YcCbcCrc converterLABh to UCS(cie1960) converterLABh to UVW(cieuvw,cie1964) converterLABh to JPEG converterLABh to LAB(cielab) converterLABh to lms converterLABh to LCHab(cielch,LCH,HLC,LSH) converterLABh to LUV(cieluv,cie1976) converterLABh to LCHuv(cielchuv) converterLABh to HSLuv(HuSL) converterLABh to HPLuv(HuSLp) converterLABh to Coloroid(ATV) converterLABh to HCG(HSG) converterLABh to HCY converterLABh to TSL converterLABh to yes converterLABh to OSA-UCS converterLABh to HSP converterLABh to Adobe® 98 RGB compatible converterLABh to Linear Adobe® 98 RGB compatible converterLABh to ACEScc converterLABh to ACEScg converterLABh to ICTCP converterLABh to JzCzHz converterLABh to Jzazbz converterLABh to LCH converterLABh to Lab D65 converterLABh to Oklch converterLABh to Oklab converterLABh to P3 converterLABh to Linear P3 converterLABh to ProPhoto RGB converterLABh to Linear ProPhoto RGB converterLABh to REC.2020 converterLABh to Linear REC.2020 converterLABh to REC.2100-HLG converterLABh to REC.2100-PQ converterLABh to Absolute XYZ D65 converterLABh to XYZ D50 converterLABh to Linear sRGB converterLABh to DLCH(DIN99 LCH) converterLABh to DIN99 Lab(DLAB) converterLABh to OKHSL converterLABh to OKHSV converterLABh to XYB converterLABh to CubeHelix converter